a quartet of small satellites flew high above California's Mojave Desert on June 15 on a demonstration mission to study the launch environment all the way from liftoff to landing the 4-inch cube spacecraft better known as cube sets are being developed to help simplify and lower the cost of small satellite missions that could fly on smaller dedicated Rockets all four cube sets were outfitted with special instrumentation to monitor flight characteristics aboard the prospector 18 rocket built by Garvey
spacecraft corporation one of the satellites cp9 belongs to California Polytechnic State University at San Luis Obispo it flew alongside Stang set created by students at Florida's Merritt Island High School we're now bringing together students experiments from other centers onto a launch vehicle so it's very exciting to see these young people move into industry build a rocket and now flying students who have built satellites and mercy's two together both cp9 and Stang set were designed to work together
recording the launch environment and communicating with each other through onboard Wi-Fi they're slated to fly aboard a Falcon 9 rocket during SpaceX's commercial resupply services mission to the International Space Station we are having our first tests for the stang set to help show that everything we've done up to this point has been correct and that our ideas are sound and our techniques are sound and that what we are planning to do is in fact going forward another satellite called phonesat was
Built by NASA's Ames Research Center, it relies on smartphone features like power memory onboard camera and small size as a platform for low cost spacecraft. Contributed the Rubix One satellite, short for rocket university broad initiatives, CubeSat Rubik was outfitted with a suite of instruments to monitor the performance of a new lightweight deployer built by Tyvek Cal Poly also serves as a liaison between the payload providers and NASA's launch services program and oversees the satellites.
Integration with the rocket in the final days before liftoff, the prospector rocket arrived at the Friends of Amateur Rocketry launch site in the Mojave Desert. The CubeSat carriers were attached to the bulkhead in the top of the rocket. The rocket was finally placed in a vertical position poised for flight. Launch day dawned bright and early, and final preparations began at 10:52 a.m. Pacific time. The single liquid fueled engine ignited, and the mission was off to a roaring start, reaching a peak of success.
peak altitude of about 9,000 feet

the Rockets parachute deployed prematurely and the vehicle continued on its trajectory coasting and tumbling to a hard landing on its side but despite the rough ride all four cube SATs were recovered phonesat and Rubik received data in flight but sustained structural damage cp9 and stank's had fared better and their teams are working to recover as much information as possible right now they're taking a part of satellite to see and analyze what happens we're taking very small steps
and documenting everything taking pictures of everything to make sure that we can recreate the scenarios and we could always look back to it a flight data recorder aboard the prospector rocket also may hold important clues we're able to recover my data logger payload a little broken but I was able to get the data card off of it and so we do have data which is it rather than a setback the flight is considered a success and a valuable learning opportunity giving the teams the chance to test
their designs in an unexpected

environment on the plus side talking to

the principal investigators the payload

folks most of them got data interesting

data probably more than if we'd had a

nominal flight so they're all busy

looking away try to see what they can do

which as a learning experience is great

more flights are planned as NASA and its

partners continue the quest for a faster

low-cost alternative by delivering cube

SATS into space as the primary payloads

aboard smaller launch vehicles