50 years ago we pioneered a path to the moon. The trail we blazed cut through the fictions of science, and showed us all what was possible.

Today our calling to explore is even greater. To go far, we must be able to sustain missions of greater distance and duration. We must use the resources we find at our destinations, overcome radiation, isolation, and extreme environments like never before.

These are the challenges we face to push the bounds of humanity.

We're going to the moon to stay, by 2024.
And this is how.

This all starts with the ability to get larger, heavier payloads off planet, and beyond Earth's gravity.

For this, we designed an entirely new rocket.

The Space Launch System.

SLS will be the most powerful rocket ever developed.

And with components and production and more in testing,

This system is capable of being the catalyst for deep space missions.

We need a capsule that can support humans from launch, through deep space, and return safely back to earth.
For this, we've built Orion.

This is NASA's next generation human space capsule.

Using data from lunar orbiters that continue to reveal the moon's hazards and resources,

we're currently developing an entirely new approach to landing and operating on the moon.

Using our commercial partners to deliver science instruments and robotics to the surface,

we are paving the way for human missions in 2024.

[Narrator] Our charge is to go quickly, and stay.

To press our collective efforts forward,

with a fervor that will see us return to the moon.
in a manner that is wholly different than 50 years ago.

- We want lunar lander's that are reusable, that can land anywhere on the lunar surface.

The simplest way to do so is to give them a platform, in orbit, around the moon, from which to transition.

- An orbiting platform to host deep space experiments, and be a way-point for human capsules.

We call this lunar outpost, Gateway.

- [Female] The beauty of the Gateway is that it can be moved between orbits.

- [Male Narrator] It will balance between the earth and moon's gravity,

[Female Narrator] In a position that is ideal for launching
even deeper space missions.

- In 2009, we learned that the moon contains millions of tons of water ice.

- This ice could be extracted and purified for water,

and be separated into oxygen for breathing,

or hydrogen for rocket fuel.

- The moon is quite uniquely suited to prepare us and propel us to Mars and beyond.

- This is what we're building.

- This is what we're training for.

- This we can replicate throughout the solar system.

- This is the next chapter of human space exploration.

- [Narrator] Humans are
the most fragile element

and yet we go for humanity.

They go to the moon and on to Mars to seek knowledge and understanding,

and to share it with all.

We go knowing our efforts will create opportunities that cannot be foreseen.

We go because we are destined to explore and see it with our own eyes.

We turn towards the moon now, not as a conclusion, but as preparation.

As a checkpoint toward all that lies beyond.

Our greatest adventures remain ahead of us.
We are going.

- We're going.

- We are going.

[Rocket engine blast]

- We are going.

- We're going.