Webb is truly a civilian scale mission, it not only changes what we know but how we think about ourselves.

It will pick up where the Hubble Space telescope & Spitzer Space telescope left off in their capabilities.

And it lets us see out through 13 billion years of cosmic time to look at the first generation of galaxies that formed after the Big Bang.

It will also look at these worlds out there, Exoplanets that may or may not harbor life.

When Webb telescope gets to space, it will be operating in very harsh conditions, in a vacuum, in very cold, so we have to test that on Earth.

At Johnson Space Center, their Chamber A was used to do the thermal-vacuum test.

Chamber A was built for the Apollo mission, they tested the Apollo spacecraft in it, and for the Webb telescope, we have totally taken
that chamber and repurposed it, it’s a multi-story

00:00:59.079 --> 00:01:05.049
thermos bottle, which we can pump all the
air out, and then chill it, very cold

00:01:05.049 --> 00:01:10.929
This critical test has been planned for a
long time, it was a very long test, and we

00:01:10.930 --> 00:01:15.000
passed with flying colors!

00:01:15.000 --> 00:01:20.150
Webb is a partnership between NASA, the European
Space Agency and the Canadian Space Agency

00:01:20.150 --> 00:01:25.780
Science is international, because we bring
the to the table that everybody can offer

00:01:25.780 --> 00:01:30.810
And It REALLY takes a planet to make telescope
like JWST

00:01:30.810 --> 00:01:35.079
It pushing the limits of technology and it’s
going to push forward the limits of science

00:01:35.079 --> 00:01:39.560
It’s an incredibly powerful tool to take
the next step in space exploration

00:01:39.560 --> 00:01:45.250
You know I really feel fortunate to be living
right now, and be at NASA right now, because

00:01:45.250 --> 00:01:51.069
for the first time in history, we can address
the question are we alone in the universe,

00:01:51.069 --> 00:01:53.799
scientifically with Webb as a major tool.